Modeling RF Systems ### Andrea Borgioli Tom Cwik borgioli@canyonlands.jpl.nasa.gov cwik@jpl.nasa.gov High Performance Computing Group Imaging and Spectrometry Systems Technology Section #### Intent To study the feasibility of modeling Quasi-Optical Systems with software packages based on an optical approach #### **Motivation** Different software packages exist. Some are based on a pure electromagnetic approach and some on an optical approach. Understanding the differences between these methods is needed for their appropriate use. #### Plan A comparison between a scalar diffraction theory and a full vector diffraction theory when used for modeling electrically large systems (such as telescopes, reflector antennas...) A better understanding of the applicability of different software tools #### Overview - Basic description - Full vector theory (Physical Optics) - Scalar theory (Fourier Optics) - Mathematical differences - Examples and Results - POPO (Physical Optics) - MACOS (Fourier Optics) - Conclusions ### Test systems (Part of the) Deep Space Network antenna X-band (8.45 GHz) D/λ ~ 100 (Microwave Instrument for the Rosetta Orbiter) MIRO Telescope 240/560 GHz D/λ ~ 250/600 Always start from Maxwell's equations: $$\nabla \times \mathbf{E} = -\mu \, \frac{\partial \, \mathbf{H}}{\partial \, t} \qquad , \qquad \nabla \cdot \epsilon \, \, \mathbf{E} = 0$$ $$\nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t} \qquad , \quad \nabla \cdot \mu \mathbf{H} = 0$$ $$\mathbf{E}(\mathbf{P}) = \frac{1}{4\pi} \int_{\mathbf{S}} \{(\mathbf{n} \times \mathbf{E}) \times \nabla \psi - j\omega \mu_{o} \psi (\mathbf{n} \times \mathbf{H}) + \frac{1}{j\omega \epsilon_{o}} [(\mathbf{n} \times \mathbf{H}) \cdot \nabla] \nabla \psi \} d\mathbf{S}$$ $$\mathbf{H}(P) = \frac{1}{4\pi} \int_{S} \{(\mathbf{n} \times \mathbf{H}) \times \nabla \psi + j\omega \varepsilon_{o} \psi (\mathbf{n} \times \mathbf{E}) - \frac{1}{j\omega \mu_{o}} [(\mathbf{n} \times \mathbf{E}) \cdot \nabla] \nabla \psi \} dS$$ #### 'Vector diffraction integrals' In terms of equivalent surface distributions $$\mathbf{E}(\mathbf{P}) = \frac{1}{4\pi} \int_{\mathbf{S}} \{-\mathbf{M}_{\mathbf{s}} \times \nabla \psi - j\omega \mu_{\mathbf{o}} \psi \mathbf{J}_{\mathbf{s}} + \frac{1}{j\omega \epsilon_{\mathbf{o}}} [\mathbf{J}_{\mathbf{s}} \cdot \nabla] \nabla \psi \} d\mathbf{S}$$ $$\mathbf{H}(P) = \frac{1}{4\pi} \int_{S} \{\mathbf{J}_{s} \times \nabla \psi + j\omega \boldsymbol{\epsilon}_{o} \psi \mathbf{M}_{s} - \frac{1}{j\omega \mu_{o}} [\mathbf{M}_{s} \cdot \nabla] \nabla \psi \} dS$$ The vector diffraction integrals are often applied to a metallic reflecting surface (reflector). $$\Rightarrow \frac{\mathbf{E}(P) = \frac{1}{4\pi} \int_{S} \left\{ -j\omega\mu_{o}\psi\mathbf{J}_{s} + \frac{1}{j\omega\epsilon_{o}} \left[\mathbf{J}_{s} \cdot \nabla\right] \nabla\psi \right\} dS}{\mathbf{H}(P) = \frac{1}{4\pi} \int_{S} \left\{ \mathbf{J}_{s} \times \nabla\psi \right\} dS}$$ • Evaluation of it requires the solution of an **integral equation**, since the induced surface-current distribution in the integral is unknown An approximations of the currents is needed #### **Physical Optics approximation:** $$J_s = 2 (n \times H_{inc})$$ on front surface $$J_s = 0$$ elsewhere Maxwell's equations approximations (medium: linear, isotropic, homogeneous and nondispersive) $$U(P) = \frac{1}{4p} \iint_{S} \left(\frac{\P \mathbf{y}}{\P n} U - \mathbf{y} \frac{\P U}{\P n} \right) ds$$ 'Scalar diffraction integral' Fresnel/Fraunhofer formulas allow diffraction pattern calculations to be reduced to relatively simple expressions The Fresnel approximation (~ near field): the spherical wavefronts are replaced by parabolic wavefronts $$U(x,y) = (...)F\left\{U(\epsilon,\eta) e^{j\frac{k}{2Z}(\epsilon^2 + \eta^2)}\right\}\Big|_{f_x = x/\lambda z}$$ $$f_y = y/\lambda z$$ F = Fourier Transform The Fraunhofer approximation (far field): the spherical wavefronts are replaced by flat wavefronts $$U(x,y) = (...) F\{ U(\epsilon,\eta) \} \Big|_{f_x = x/\lambda z}$$ $$f_y = y/\lambda z$$ F = Fourier Transform #### Are They Equivalent? The scalar formulation is not generally valid for an open surface (vector integrals are not always equivalent to scalar integrals) Optical approach Full Electromagnetic approach ### Interpretation #### **Physical Optics** #### Fresnel/Fraunhofer formula - Axially directed component of the currents are neglected - Error is small on the optical axis, provided the angle of observation is small #### **Test Codes** - POPO ('Physical Optics-Physical Optics') - based on a full electromagnetic theory - very accurate (our 'true' solution) - MACOS ('Modeling and Analysing for Controlled Optical Sytems') - based on Fourier Optics - successfully used for modelling optical systems ### Test system: DSN subsystem Far field pattern on XY (plane of symmetry) Far field pattern on YZ (plane of asymmetry) Ray tracing only on XY (plane of symmetry) Ray tracing only on YZ (plane of asymmetry) ### Test system: MIRO telescope Far field pattern of main reflector at 240 GHz ### Computational tradeoff #### **POPO** (radiation integral over the surface) computationally very expensive #### **MACOS** (Fast Fourier Transform) computationally inexpensive #### Conclusions Optics-based software packages applied to electrically large systems may not provide accurate representations for the fields in regions of interest, but since they are computationally advantageous they can be a useful support in early design phases of RF systems.